

PEGMATITE INTERSECTED IN EVERY HOLE OF DRILLING

FIRERING STRATEGIC MINERALS PLC Released 07:00:04 13 October 2022

RNS Number : 7208C

Firering Strategic Minerals PLC 13 October 2022

Firering Strategic Minerals plc / EPIC: FRG / Market: AIM / Sector: Mining

13 October 2022

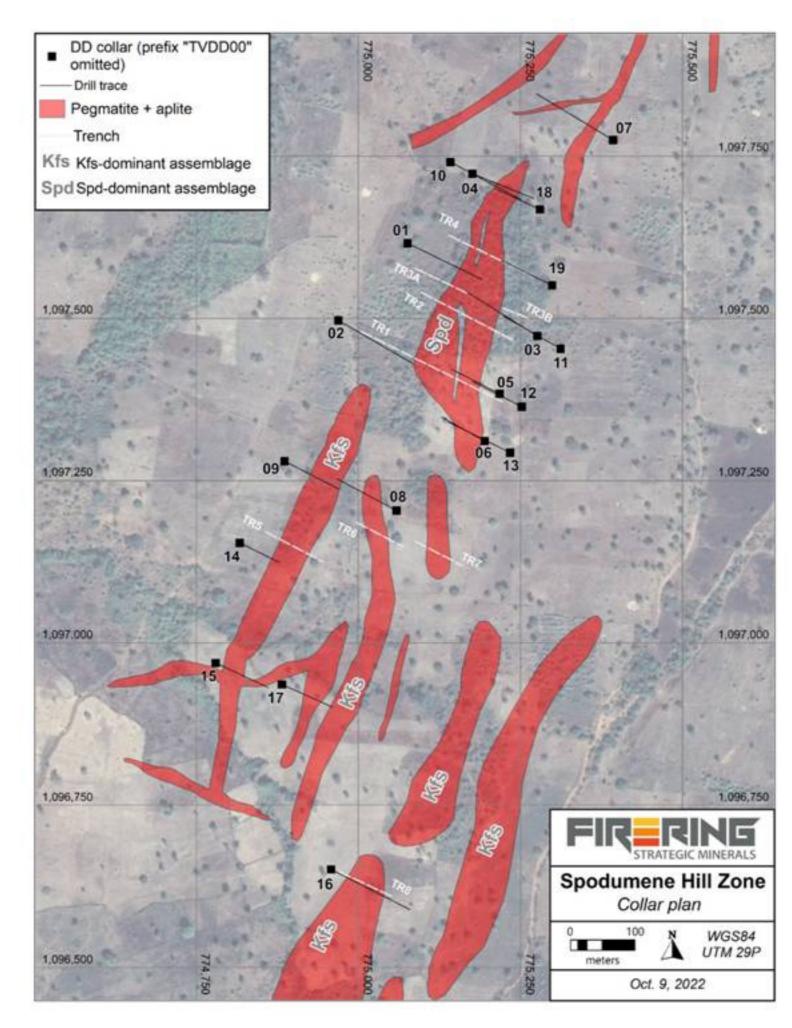
Firering Strategic Minerals plc ("Firering" or "the Company")

First Phase Diamond Drilling Complete - Awaiting Lithium Assays - Pegmatite Intersected in Every Hole with Visual Mineralisation Identified in

18 out of the 19 holes Drilled -

Firering Strategic Minerals plc, an exploration company focusing on critical minerals, is pleased to announce the results and completion of its Phase 1 diamond drill ("DD") programme on its flagship Atex Lithium-Tantalum Project ("Atex"), in Côte d'Ivoire.

Highlights


- · Drilled the final eight holes of the Phase 1 DD programme, resulting in a total of 19 holes drilled and 3,039m of drilling.
- Pegmatite intersected in all 19 drill holes.
- Visual identification of lithium mineralisation in 18 of the 19 drill holes. Intercepts include:
 - Hole 4: 9.3m (apparent thickness) showing spodumene and lepidolite. • Hole 4: 19.8m (apparent thickness) showing spodumene.
 - Hole 5: 11.6m (apparent thickness) showing spodumene.
 - Hole 6: 20.3m (apparent thickness) showing spodumene.
 - Hole 8: 11.2m (apparent thickness) showing spodumene. • Hole 11: 21.5m (apparent thickness) showing spodumene.
 - Hole 18: 16.7m (apparent thickness) showing spodumene and lepidolite.
- Prepared half-core samples for assaying with the first results expected during Q4 2022.
- Twenty samples were collected from the drill core for future petrographic (thin sections) and X-• ray diffraction ("XRD") analysis.
- Samples of colluvium and weathered pegmatite were sent to Cormet in South Africa for • metallurgical test work.

Nineteen diamond drill holes were completed around and along strike from Spodumene Hill

- Have now successfully completed a total of nineteen diamond drill ("DD") holes targeting the • potential Li-bearing pegmatites for a total of 3,039m.
- All drill holes have been drilled at a dip of 50 degrees to either the northwest or southeast to • intersect the steeply dipping, north-northeast striking pegmatites (see map overleaf).

Yuval Cohen, Chief Executive of Firering, said:

"I am pleased to provide our next update regarding our Phase 1 core drilling programme, which has been completed successfully. Nineteen holes were drilled, and pegmatites were intersected in every hole. Lithium mineralisation was visually observed in eighteen out of the nineteen holes, and we are now eagerly awaiting the assay results, the first of which should arrive during Q4 2022. We look forward to providing the market with these assay results in due course".

Map showing all nineteen drill holes and eight trenches completed across and along strike from Spodumene Hill.

Initial visual observations of the drill core

- All nineteen holes drilled intersected pegmatites and have been logged in detail.
- Visible lithium mineralisation is present in eighteen out of the nineteen holes.
- The first batch of prepared half-core samples arrived at Intertek Laboratories in Perth on 21 September 2022 for assaying.
- First assay results are expected in Q4 2022.
- XRD and petrographic (thin section) analysis on the 20 samples selected from the drill core will commence once assay results have come in.

• Additional XRD analysis will also be conducted on the basis of the assay results. Results of all nineteen holes drilled during Phase 1 are shown in the table below.

	UTM29N/WGS84			Hole			
Hole ID	Easting (m)	Northing (m)	Elevation (m)	depth (m)	Azimuth (magnetic)	Dip	Comments
TVDD0001	775076	1097616	405	199	124°	-50°	Visible spodumene
TVDD0002	774969	1097497	403	201.1	124°	-50°	No visible lithium mineralisation observed
TVDD0003	775278	1097417	407	200.95	304°	-50°	Visible spodumene and lepidolite
TVDD0004	775176	1097723	390	161.6	124°	-50°	Visible spodumene and lepidolite
TVDD0005	775218	1097384	409	131.8	304°	-50°	Visible spodumene
TVDD0006	775195	1097311	407	122.7	304°	-50°	Visible spodumene
TVDD0007	775393	1097775	397	209.7	304°	-50°	Visible spodumene
TVDD0008	775059	1097204	403	161.7	304°	-50°	Visible spodumene
TVDD0009	774881	1097280	403	149.8	124°	-50°	Visible spodumene
TVDD0010	775142	1097741	397	200.75	124°	-50°	Visible spodumene
TVDD0011	775312	1097453	402	157.9	304°	-50°	Visible spodumene
TVDD0012	775252	1097364	401	131.8	304°	-50°	Visible spodumene
TVDD0013	775234	1097293	408	164.6	304°	-50°	Visible spodumene
TVDD0014	774817	1097154	399	111	124	-50°	Visible spodumene and lepidolite
TVDD0015	774780	1096969	406	136	124	-50°	Visible spodumene and lepidolite
TVDD0016	774958	1096651	409	212.6	124	-50°	Visible spodumene and lepidolite
TVDD0017	774882	1096936	405	131.7	124	-50°	Visible spodumene and lepidolite
TVDD0018	775280	1097668	405	119.6	304	-50°	Visible spodumene and lepidolite
TVDD0019	775299	1097551	408	134.8	304	-50°	Visible spodumene and lepidolite

Some photographs of recent core with visible spodumene (left) and spodumene and lepidolite (right).

Pegmatite intercepts of 1m or more are shown in the following table.

Hole ID	From (m)	To (m)	Intersection length (m)	Lithium mineralisation observed
TVDD0001	53.5	57.5	4	Spodumene
TVDD0002	4.85	6.75	1.9	
TVDD0002 TVDD0002	68.3 72.02	69.68 73.05	1.38 1.03	
TVDD0002	78.6	81.61	3.01	
TVDD0002 TVDD0003	98.72 37.25	100.1 44.7	1.38 7.45	
TVDD0003	44.7	48.65	3.95	Spodumene
TVDD0003 TVDD0003	48.65 60.7	52.6 89.6	3.95 28.9	
TVDD0003	111.1	112.65	1.55	
TVDD0004	67.7	69.05	1.35	Spodumene + Lepidolite
TVDD0004 TVDD0004	69.53 71.64	71.47 75.37	1.94 3.73	Spodumene
TVDD0004	75.94	81.84	5.9	Spodumene + Lepidolite
TVDD0004 TVDD0004	81.84 85.5	85.5 91.2	3.66	Spodumene + Lepidolite Spodumene + Lepidolite
TVDD0004	91.2	100.45	9.25	Spodumene + Lepidolite
TVDD0004 TVDD0004	100.75 104.9	104.9 107	4.15	Spodumene + Lepidolite
TVDD0004 TVDD0004	104.9	126.8	19.8	Spodumene
TVDD0004	126.8	129.11	2.31	Spodumene
TVDD0004 TVDD0004	129.91 133.7	133.7 138.61	3.79 4.91	
TVDD0004	138.61	139.95	1.34	
TVDD0005 TVDD0005	38.85 60.9	44.42 72.53	5.57	Spodumene
TVDD0005	72.53	72.33	6.39	Lepidolite
TVDD0005	78.92	80.2	1.28	Lepidolite
TVDD0005 TVDD0006	80.2 16.05	81.93 20	1.73 3.95	
TVDD0006	20	22.85	2.85	
TVDD0006 TVDD0006	22.85 26.3	26.3 32.3	3.45 6	
TVDD0006 TVDD0006	26.3 32.3	44.4	6 12.1	Spodumene
TVDD0006	44.4 56.8	56.8 60	12.4	
TVDD0006 TVDD0006	56.8 60	64.55	3.2 4.55	Lepidolite
TVDD0006	64.55	67.1	2.55	Spodumene
TVDD0006 TVDD0006	67.1 87.4	87.4 89.9	20.3	Spodumene
TVDD0007	73.14	74.41	1.27	
TVDD0007 TVDD0007	82.1 185.6	83.71 191.04	1.61 5.44	Spodumene + Lepidolite
TVDD0007 TVDD0007	196.57	199.24	2.67	
TVDD0008	31	42.24	11.24	Spodumene
TVDD0008 TVDD0008	52.58 103.68	58 104.83	5.42	Spodumene
TVDD0009	23.61	38.19	14.58	
TVDD0009 TVDD0009	44.3 50.34	45.63 58.01	1.33 7.67	Spodumene
TVDD0009	69.03	70.79	1.76	
TVDD0010 TVDD0010	58.15 66.56	62.78 68.69	4.63 2.13	Spodumene Lepidolite
TVDD0010 TVDD0010	95.54	108.04	12.5	Spodumene
TVDD0010	153.35	157.07	3.72	Spodumene
TVDD0010 TVDD0010	158.7 185.52	162.35 186.56	3.65 1.04	Spodumene Lepidolite
TVDD0011	6.4	7.75	1.35	
TVDD0011 TVDD0011	40.82 49.21	44.28 50.64	3.46	Spodumene
TVDD0011 TVDD0011	53.2	54.55	1.35	Spodumene
TVDD0011	54.55	76	21.45	Spodumene
TVDD0011 TVDD0011	76 78.64	78.64 84.75	2.64 6.11	
TVDD0012	27	32.27	5.27	Spodumene
TVDD0012 TVDD0012	33.95 38.8	38.8 46.3	4.85	Spodumene
TVDD0012	46.3	59.05	12.75	
TVDD0013 TVDD0013	61.42 85.15	70.37 96.18	8.95 11.03	Spodumene
TVDD0013 TVDD0014	31.09	39.4	8.31	Spodumene + Lepidolite
TVDD0014	39.4 30.1	44.44	5.04	T: J . 1%
TVDD0015 TVDD0015	30.1 87.72	41.57 91.43	11.47 3.71	Lepidolite
TVDD0016	10.7	18.71	8.01	
TVDD0016 TVDD0016	34.04 50.64	50.02 55.74	15.98 5.1	
TVDD0016	65.2	69.02	3.82	
TVDD0016 TVDD0016	72.74 91.31	84.37 104.88	11.63 13.57	Spodumene
TVDD0016 TVDD0016	91.31 104.88	104.88	2.82	
TVDD0016	122.25	123.28	1.03	
TVDD0016 TVDD0016	138.36 141.1	139.4 152.3	1.04 11.2	
TVDD0016	152.3	171.62	19.32	Spodumene + Lepidolite
TVDD0016 TVDD0016	171.62 184.43	184.43 186.18	12.81 1.75	
TVDD0016	186.18	195.39	9.21	Spodumene + Lepidolite
TVDD0017 TVDD0017	17.7 26.6	24.4 28.4	6.7 1.8	Spodumene
TVDD0017 TVDD0017	20.0 29.4	28.4 37.45	8.05	Lepidolite
TVDD0018	67.51 77.39	70.99	3.48	Lepidolite Spodumene + Lepidolite
TVDD0018 TVDD0018	77.39 79.48	79.48 82.77	2.09 3.29	Spodumene + Lepidolite Spodumene
TVDD0018	82.77	99.5	16.73	Spodumene + Lepidolite
TVDD0018 TVDD0019	99.5 60.42	102.33 67.12	2.83 6.7	Spodumene + Lepidolite Spodumene + Lepidolite
TVDD0019	71.53	81.34	9.81	Spodumene
TVDD0019	81.34	92.46	11.12	Spodumene

Note: Intersections show apparent thickness, not true thickness. The relationship between true and apparent thickness has not yet been established.

Metallurgical test work

- All planned pits, including three additional pits, on and around Spodumene Hill were completed.
- All pits were sampled and analysed for tantalum using Firering's new Vanta pXRF.
- Composite samples containing tantalum were prepared and sent to Coremet in Johannesburg, • South Africa, in September 2022 for metallurgical test work.
- A separate sample of 30kg of lepidolite was also sent to Coremet for test work.

Environmental and Social Governance

· Officially opened an additional water borehole in the nearby village of Touvré on 21 September 2022 in the presence of local, regional and national authorities (see photographs below).

Pictures taken during the official opening of the water borehole in Tounvré, 21 September 2022.

Competent Person

In accordance with the AIM Note for Mining and Oil and Gas Companies, Firering discloses that Michael Cronwright of CSA Global is the Competent Person that has reviewed the technical information contained in this document. Michael Cronwright has a Pr.Sci.Nat with the South African Council for Natural Scientific Professions ("SACNASP") and is a member in good standing with SACNASP. Mr Cronwright has the appropriate relevant qualifications, experience, competence and independence to act as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Michael Cronwright consents to the inclusion of the information in this announcement in the form and context in which it appears.

THIS ANNOUNCEMENT CONTAINS INSIDE INFORMATION AS STIPULATED UNDER THE UK VERSION OF THE MARKET ABUSE REGULATION NO 596/2014 WHICH IS PART OF ENGLISH LAW BY VIRTUE OF THE EUROPEAN (WITHDRAWAL) ACT 2018, AS AMENDED. ON PUBLICATION OF THIS ANNOUNCEMENT VIA A REGULATORY INFORMATION SERVICE, THIS INFORMATION IS CONSIDERED TO BE IN THE PUBLIC DOMAIN.

*** ENDS ***

For further information and updates on Firering's exploration programme, visit www.fireringplc.com or contact the following:

Firering Strategic Minerals	Tel: +44 20 7236 1177
Yuval Cohen	
Tim Daniel	
SPARK Advisory Partners Limited	Tel: +44 20 3368 3550
Nominated Adviser	
Neil Baldwin / James Keeshan / Adam Dawes	
Optiva Securities Limited	Tel: +44 20 3137 1903
Broker	
Christian Dennis / Daniel Ingram	
St Brides Partners Limited	T: +44 20 7236 1177
Financial PR	E: firering@stbridespartners.co.uk
Ana Ribeiro / Susie Geliher / Isabelle Morris	

Notes to Editors:

Firering Strategic Minerals

Firering Strategic Minerals plc is an AIM-quoted mining company focused on exploring and developing a portfolio of mines producing critical minerals in the Côte d'Ivoire including lithium and Tantalum to support the global transition to net zero emissions. It operates the Atex Lithium-Tantalum Project in northern Côte d'Ivoire, which is prospective for both lithium and tantalum. Firering intends to advance development at Atex with a view to establishing a maiden lithium resource and a pilot scale production of ethically sourced tantalum and niobium within 18 months to generate early revenues and support further exploration work. Provided pilot production is successful, a large-scale Tantalum production facility will be developed, which will be supported by a debt facility of FCFA 5,057,000,000 (approximately €7,500,000) currently under negotiation to fund the entire scale-up plan to develop a portfolio of ethically sourced mineral projects in the Côte d'Ivoire, supplying EV batteries, high tech electronics and other fast-growing end markets.

Glossary of Technical Terms

Pegmatite	An igneous rock typically of granitic composition, which is distinguished from other igneous rocks by the extremely coarse size of its crystals, or by an abundance of crystals with skeletal, graphic, or other strongly directional growth habits, or by a prominent spatial zonation of mineral assemblages
Lepidolite	Lepidolite is a purple to lilac-grey or rose-coloured member of the mica group of minerals. It has chemical formula $K(Li,AI)_3(AI, Si)_4O_{10}(F,OH)_2$. It is part of the polylithionite, lepidolite, and trilithionite group of minerals which share similar properties and but have varying ratios of lithium and aluminium in their chemical formulas and a potential secondary source of lithium.
Spodumene	Spodumene is a pyroxene group mineral with a chemical formula of LiAlSi ₂ O ₆ . Spodumene is mined from pegmatites and concentrates produced which are the one of the primary sources of lithium.
XRD	x-Ray diffraction (XRD), or x-ray powder diffraction, utilizes x-ray radiation on crystalline organic and inorganic samples. The rays are diffracted in a pattern determined by the position, arrangement, and size of the constituents of the crystal.
pXRF	portable X-ray Fluorescence handheld device that uses X-rays to excite matter at the atomic level for determining approximate chemical compositions. A built in CPU and display on the back of the unit provide live geochemical results within seconds.

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact <u>rns@lseg.com</u> or visit <u>www.rns.com</u>.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our <u>Privacy Policy</u>.